• Privacy & Policy
  • Contact
2025-05-21 03:55:54
  • Login
  • Register
欢迎来到ClaudeAI博客社区
  • Home
  • AI教程
    • 大模型应用实践课程
      • 大型语言模型课程介绍
      • 第1-1章:使用 OpenAI 创建您的第一个聊天机器人-大模型应用实践教程
      • 第1-2章:使用 OpenAI 创建简单的自然语言到 SQL-大模型应用实践教程
    • Claude应用开发教程
      • 第1章:基本提示结构-Claude应用开发教程
      • 第 2 章:基本函数构建-Claude开发应用教程
      • 第3章:角色扮演提示-Claude应用开发教程
      • 第4章 分离数据和指令-Claude开发应用教程
      • 第 5 章:格式化输出-Claude应用开发教程
      • 第6章:预知(Thinking Step by Step)-Claude应用开发教程
    • Claude提示词教程
      • 第 1 课:基本提​​示词技术-Claude提示词工程课程
      • 第 2 课:医疗病例摘要助手[XML-JSON格式化输出]-Claude提示词工程教程
      • 第 3 课:提示工程迭代流程-Claude提示词工程课程
      • 第 4 课:客服聊天记录总结生成器-Claude提示词课程
    • Claude函数/工具调用教程
      • 第3章:使用工具调用强制 JSON结构输出[以提取维基百科页面文章为例]-Claude工具调用教程
      • 第2章:ClaudeAPI如何构建工具并调用[以计算器工具调用为例]-Claude工具调用教程
      • 第1章:工具使用/函数调用介绍和概述-Claude函数工具调用教程
    • ClaudeAPI基础入门教程
      • 第2章:构建简单的多轮聊天机器人-ClaudeAPI基础入门教程
      • 第1章:Claude SDK安装和使用-CLaudeAPI基础入门教程
      • Claude API基础知识课程简介
  • AI大模型
    • chatgpt
      • OpenAI o1-preview 简介和如何使用
      • 如何设置使用新的 ChatGPT o1 模型
      • OpenAI o1 性能评估和学习推理思维链介绍
      • OpenAI o1-mini和gpt4o性能对比介绍
      • OpenAI o1 模型与GPT-4o模型使用区别和场景
    • Claude
      • Claude的project介绍和创建
      • Claude Sonnet 3.5 API 教程
      • Claude 3 最新注册使用教程!(国内版)-性能完爆GPT4o!
      • Claude3.5 vs GPT4 谁才是最强大模型?
      • Claude国内无法登录的解决办法
      • Claude3.5 Sonnet的详细介绍
      • Claude如何写好提示词
      • Claude快速入门指南
    • Llama3
      • Llama3.2最新90b 11b 3b 1b模型介绍-AI大模型
      •  Llama Stack入门安装指南[结合Ollama]-AI大模型
      • Llama 3.2介绍最全技术报告-AI大模型
      • Llama 3.1技术报告:Meta推出最强开源大模型
      • Meta 的 Llama 3.1 405B工作原理、用例等
      • 如何在本地安装和运行 Meta Llama 3.1
      • 使用 Ollama和租用GPU 运行 Llama 3.1 405B:分步指南
      • Llama3.1 Colab 微调指南
  • AI论文
    • OpenAIo1原理解读:重复采样扩展推理计算[Large Language Monkeys: Scaling Inference Compute with Repeated Sampling]-AI论文
    • OpenIAo1原理解读:Q*强化学习与启发式搜索推理框架[Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning]-AI论文
    • OpenAIo1原理解读:基于蒙特卡罗树搜索的自我博弈互相推理[Self-play Mutual Reasoning]-AI论文
    • openAIo1原理解读:推理增加计算量提高大模型效果[Scaling LLM Test-Time Compute Optimally can be More Effective]-AI论文
    • OpenAI o1大模型原理解读:自博弈Self-play强化学习方法[A Survey on Self-play Methods in Reinforcement Learning]-AI论文
    • OpenAI o1大模型原理解读:Quiet-STaR 推理思维链[Language Models Can Teach Themselves to Think Before Speaking]-AI论文
    • OpenAI o1大模型原理论文汇总[Awesome LLM Strawberry]-AI论文
  • AI应用
    •  Crawl4AI:开源 LLM 友好型 Web 爬虫和抓取工具-AI应用
    • AI Scientist:用于全自动科学发现的写论文应用-AI应用
    • ai-data-analysis-MulitAgent:一种用于自动化复杂研究过程的先进多智能体系统-AI应用
    • Aider:最好的免费开源 AI 编码助手,自动git提交代码!-AI应用
    • AIHawk:你的 AI 求职助手,自动化申请、获得个性化推荐,更快找到您梦想的工作-AI应用
  • 加入会员社区
  • About Us
No Result
View All Result
  • Home
  • AI教程
    • 大模型应用实践课程
      • 大型语言模型课程介绍
      • 第1-1章:使用 OpenAI 创建您的第一个聊天机器人-大模型应用实践教程
      • 第1-2章:使用 OpenAI 创建简单的自然语言到 SQL-大模型应用实践教程
    • Claude应用开发教程
      • 第1章:基本提示结构-Claude应用开发教程
      • 第 2 章:基本函数构建-Claude开发应用教程
      • 第3章:角色扮演提示-Claude应用开发教程
      • 第4章 分离数据和指令-Claude开发应用教程
      • 第 5 章:格式化输出-Claude应用开发教程
      • 第6章:预知(Thinking Step by Step)-Claude应用开发教程
    • Claude提示词教程
      • 第 1 课:基本提​​示词技术-Claude提示词工程课程
      • 第 2 课:医疗病例摘要助手[XML-JSON格式化输出]-Claude提示词工程教程
      • 第 3 课:提示工程迭代流程-Claude提示词工程课程
      • 第 4 课:客服聊天记录总结生成器-Claude提示词课程
    • Claude函数/工具调用教程
      • 第3章:使用工具调用强制 JSON结构输出[以提取维基百科页面文章为例]-Claude工具调用教程
      • 第2章:ClaudeAPI如何构建工具并调用[以计算器工具调用为例]-Claude工具调用教程
      • 第1章:工具使用/函数调用介绍和概述-Claude函数工具调用教程
    • ClaudeAPI基础入门教程
      • 第2章:构建简单的多轮聊天机器人-ClaudeAPI基础入门教程
      • 第1章:Claude SDK安装和使用-CLaudeAPI基础入门教程
      • Claude API基础知识课程简介
  • AI大模型
    • chatgpt
      • OpenAI o1-preview 简介和如何使用
      • 如何设置使用新的 ChatGPT o1 模型
      • OpenAI o1 性能评估和学习推理思维链介绍
      • OpenAI o1-mini和gpt4o性能对比介绍
      • OpenAI o1 模型与GPT-4o模型使用区别和场景
    • Claude
      • Claude的project介绍和创建
      • Claude Sonnet 3.5 API 教程
      • Claude 3 最新注册使用教程!(国内版)-性能完爆GPT4o!
      • Claude3.5 vs GPT4 谁才是最强大模型?
      • Claude国内无法登录的解决办法
      • Claude3.5 Sonnet的详细介绍
      • Claude如何写好提示词
      • Claude快速入门指南
    • Llama3
      • Llama3.2最新90b 11b 3b 1b模型介绍-AI大模型
      •  Llama Stack入门安装指南[结合Ollama]-AI大模型
      • Llama 3.2介绍最全技术报告-AI大模型
      • Llama 3.1技术报告:Meta推出最强开源大模型
      • Meta 的 Llama 3.1 405B工作原理、用例等
      • 如何在本地安装和运行 Meta Llama 3.1
      • 使用 Ollama和租用GPU 运行 Llama 3.1 405B:分步指南
      • Llama3.1 Colab 微调指南
  • AI论文
    • OpenAIo1原理解读:重复采样扩展推理计算[Large Language Monkeys: Scaling Inference Compute with Repeated Sampling]-AI论文
    • OpenIAo1原理解读:Q*强化学习与启发式搜索推理框架[Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning]-AI论文
    • OpenAIo1原理解读:基于蒙特卡罗树搜索的自我博弈互相推理[Self-play Mutual Reasoning]-AI论文
    • openAIo1原理解读:推理增加计算量提高大模型效果[Scaling LLM Test-Time Compute Optimally can be More Effective]-AI论文
    • OpenAI o1大模型原理解读:自博弈Self-play强化学习方法[A Survey on Self-play Methods in Reinforcement Learning]-AI论文
    • OpenAI o1大模型原理解读:Quiet-STaR 推理思维链[Language Models Can Teach Themselves to Think Before Speaking]-AI论文
    • OpenAI o1大模型原理论文汇总[Awesome LLM Strawberry]-AI论文
  • AI应用
    •  Crawl4AI:开源 LLM 友好型 Web 爬虫和抓取工具-AI应用
    • AI Scientist:用于全自动科学发现的写论文应用-AI应用
    • ai-data-analysis-MulitAgent:一种用于自动化复杂研究过程的先进多智能体系统-AI应用
    • Aider:最好的免费开源 AI 编码助手,自动git提交代码!-AI应用
    • AIHawk:你的 AI 求职助手,自动化申请、获得个性化推荐,更快找到您梦想的工作-AI应用
  • 加入会员社区
  • About Us
No Result
View All Result
欢迎来到ClaudeAI博客社区
No Result
View All Result
Home AI应用

Crawl4AI 开源LLM Web 爬虫快速入门指南

小远 by 小远
2024-10-16
in AI应用
1

欢迎阅读 Crawl4AI 快速入门指南!在本教程中,我们将以友好而幽默的语气向您介绍 Crawl4AI 的基本用法。我们将介绍从基本用法到分块和提取策略等高级功能的所有内容,所有这些都具有异步编程的强大功能。让我们开始吧!🌟

工具简介安装指南参考:

 Crawl4AI:开源 LLM 友好型 Web 爬虫和抓取工具-AI应用

目录

Toggle
  • 入门指南
  • 基本用法
  • 截屏
  • 理解参数
  • 添加分块策略
  • 添加提取策略
  • 使用 LLMExtractionStrategy
  • 交互式提取🖱️
  • 基于会话的高级动态内容爬取
  • 恭喜!🎉

入门指南

首先,让我们导入必要的模块并创建一个实例AsyncWebCrawler。我们将使用异步上下文管理器,它为我们处理爬虫的设置和拆卸。

import asyncio
from crawl4ai import AsyncWebCrawler

async def main():
    async with AsyncWebCrawler(verbose=True) as crawler:
        # We'll add our crawling code here
        pass

if __name__ == "__main__":
    asyncio.run(main())

基本用法

只需提供一个 URL,让 Crawl4AI 发挥神奇的作用!

async def main():
    async with AsyncWebCrawler(verbose=True) as crawler:
        result = await crawler.arun(url="https://www.nbcnews.com/business")
        print(f"Basic crawl result: {result.markdown[:500]}")  # Print first 500 characters

asyncio.run(main())

截屏

让我们对页面进行截图吧!

import base64

async def main():
    async with AsyncWebCrawler(verbose=True) as crawler:
        result = await crawler.arun(url="https://www.nbcnews.com/business", screenshot=True)
        with open("screenshot.png", "wb") as f:
            f.write(base64.b64decode(result.screenshot))
        print("Screenshot saved to 'screenshot.png'!")

asyncio.run(main())

理解参数

默认情况下,Crawl4AI 会缓存您的抓取结果。这意味着对同一 URL 的后续抓取将更快!让我们来看看实际效果。

async def main():
    async with AsyncWebCrawler(verbose=True) as crawler:
        # First crawl (caches the result)
        result1 = await crawler.arun(url="https://www.nbcnews.com/business")
        print(f"First crawl result: {result1.markdown[:100]}...")

        # Force to crawl again
        result2 = await crawler.arun(url="https://www.nbcnews.com/business", bypass_cache=True)
        print(f"Second crawl result: {result2.markdown[:100]}...")

asyncio.run(main())

添加分块策略

让我们添加一个分块策略:RegexChunking!此策略根据给定的正则表达式模式拆分文本。

from crawl4ai.chunking_strategy import RegexChunking

async def main():
    async with AsyncWebCrawler(verbose=True) as crawler:
        result = await crawler.arun(
            url="https://www.nbcnews.com/business",
            chunking_strategy=RegexChunking(patterns=["\n\n"])
        )
        print(f"RegexChunking result: {result.extracted_content[:200]}...")

asyncio.run(main())

添加提取策略

让我们通过提取策略变得更聪明:JsonCssExtractionStrategy!此策略使用 CSS 选择器从 HTML 中提取结构化数据。

from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
import json

async def main():
    schema = {
        "name": "News Articles",
        "baseSelector": "article.tease-card",
        "fields": [
            {
                "name": "title",
                "selector": "h2",
                "type": "text",
            },
            {
                "name": "summary",
                "selector": "div.tease-card__info",
                "type": "text",
            }
        ],
    }

    async with AsyncWebCrawler(verbose=True) as crawler:
        result = await crawler.arun(
            url="https://www.nbcnews.com/business",
            extraction_strategy=JsonCssExtractionStrategy(schema, verbose=True)
        )
        extracted_data = json.loads(result.extracted_content)
        print(f"Extracted {len(extracted_data)} articles")
        print(json.dumps(extracted_data[0], indent=2))

asyncio.run(main())

使用 LLMExtractionStrategy

是时候拿出重磅武器了:LLMExtractionStrategy!此策略使用大型语言模型从网页中提取相关信息。

from crawl4ai.extraction_strategy import LLMExtractionStrategy
import os
from pydantic import BaseModel, Field

class OpenAIModelFee(BaseModel):
    model_name: str = Field(..., description="Name of the OpenAI model.")
    input_fee: str = Field(..., description="Fee for input token for the OpenAI model.")
    output_fee: str = Field(..., description="Fee for output token for the OpenAI model.")

async def main():
    if not os.getenv("OPENAI_API_KEY"):
        print("OpenAI API key not found. Skipping this example.")
        return

    async with AsyncWebCrawler(verbose=True) as crawler:
        result = await crawler.arun(
            url="https://openai.com/api/pricing/",
            word_count_threshold=1,
            extraction_strategy=LLMExtractionStrategy(
                provider="openai/gpt-4o",
                api_token=os.getenv("OPENAI_API_KEY"),
                schema=OpenAIModelFee.schema(),
                extraction_type="schema",
                instruction="""From the crawled content, extract all mentioned model names along with their fees for input and output tokens. 
                Do not miss any models in the entire content. One extracted model JSON format should look like this: 
                {"model_name": "GPT-4", "input_fee": "US$10.00 / 1M tokens", "output_fee": "US$30.00 / 1M tokens"}.""",
            ),
            bypass_cache=True,
        )
        print(result.extracted_content)

asyncio.run(main())

交互式提取🖱️

让我们在提取之前使用 JavaScript 与页面进行交互!

async def main():
    js_code = """
    const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More'));
    loadMoreButton && loadMoreButton.click();
    """

    wait_for = """() => {
        return Array.from(document.querySelectorAll('article.tease-card')).length > 10;
    }"""

    async with AsyncWebCrawler(verbose=True) as crawler:
        result = await crawler.arun(
            url="https://www.nbcnews.com/business",
            js_code=js_code,
            wait_for=wait_for,
            css_selector="article.tease-card",
            bypass_cache=True,
        )
        print(f"JavaScript interaction result: {result.extracted_content[:500]}")

asyncio.run(main())

基于会话的高级动态内容爬取

在现代 Web 应用程序中,内容通常是动态加载的,无需更改 URL。这在单页应用程序 (SPA) 或使用无限滚动的网站中很常见。依赖 URL 更改的传统抓取方法在这里不起作用。这就是 Crawl4AI 的高级基于会话的抓取派上用场的地方!

这种方法的强大之处在于:

  1. 会话保存:通过使用session_id,我们可以在与页面的多次交互中保持抓取会话的状态。这对于浏览动态加载的内容至关重要。
  2. 异步 JavaScript 执行:我们可以执行自定义 JavaScript 来触发内容加载或导航。在此示例中,我们将点击“加载更多”按钮来获取下一页的提交。
  3. 动态内容等待:该wait_for参数允许我们指定在认为页面加载完成之前必须满足的条件。这确保我们不会在新内容完全加载之前提取数据。

让我们通过一个真实示例来了解其工作原理:抓取 GitHub 存储库中的多页提交。加载更多提交时,URL 不会改变,因此我们将使用这些高级技术来导航和提取数据。

import json
from bs4 import BeautifulSoup
from crawl4ai import AsyncWebCrawler
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy

async def main():
    async with AsyncWebCrawler(verbose=True) as crawler:
        url = "https://github.com/microsoft/TypeScript/commits/main"
        session_id = "typescript_commits_session"
        all_commits = []

        js_next_page = """
        const button = document.querySelector('a[data-testid="pagination-next-button"]');
        if (button) button.click();
        """

        wait_for = """() => {
            const commits = document.querySelectorAll('li.Box-sc-g0xbh4-0 h4');
            if (commits.length === 0) return false;
            const firstCommit = commits[0].textContent.trim();
            return firstCommit !== window.lastCommit;
        }"""

        schema = {
            "name": "Commit Extractor",
            "baseSelector": "li.Box-sc-g0xbh4-0",
            "fields": [
                {
                    "name": "title",
                    "selector": "h4.markdown-title",
                    "type": "text",
                    "transform": "strip",
                },
            ],
        }
        extraction_strategy = JsonCssExtractionStrategy(schema, verbose=True)

        for page in range(3):  # Crawl 3 pages
            result = await crawler.arun(
                url=url,
                session_id=session_id,
                css_selector="li.Box-sc-g0xbh4-0",
                extraction_strategy=extraction_strategy,
                js_code=js_next_page if page > 0 else None,
                wait_for=wait_for if page > 0 else None,
                js_only=page > 0,
                bypass_cache=True,
                headless=False,
            )

            assert result.success, f"Failed to crawl page {page + 1}"

            commits = json.loads(result.extracted_content)
            all_commits.extend(commits)

            print(f"Page {page + 1}: Found {len(commits)} commits")

        await crawler.crawler_strategy.kill_session(session_id)
        print(f"Successfully crawled {len(all_commits)} commits across 3 pages")

asyncio.run(main())

在此示例中,我们从 GitHub 存储库中抓取了多页提交内容。加载更多提交内容时,URL 不会发生变化,因此我们使用 JavaScript 点击“加载更多”按钮,并设置wait_for条件以确保在提取之前加载新内容。这种强大的组合使我们能够轻松地从复杂的动态加载 Web 应用程序中导航和提取数据!

恭喜!🎉

您已完成 Crawl4AI 快速入门指南!现在开始像专业人士一样异步抓取网页吧!🕸️

Tags: Crawl4AILLMweb大模型爬虫
Previous Post

 Crawl4AI:开源 LLM 友好型 Web 爬虫和抓取工具-AI应用

Next Post

MiniMind 3小时完全从0训练26M的小参数GPT,个人显卡即可推理训练!-AI应用

小远

小远

大家好,我是小远,毕业于华南理工大学。作为一名AI算法工程师,我创立了个人博客,旨在成为连接AI技术前沿与广大爱好者的桥梁。宗旨是:记录并分享关于AI大模型的最新知识、研究成果及行业动态,致力于普及AI知识,降低技术门槛,让更多人能够了解并参与到这场科技革命中来。

Related Posts

Research Town:开发者模拟研究社区多智能体平台-AI应用
AI应用

Research Town:开发者模拟研究社区多智能体平台-AI应用

2024-11-06
第1-3章:通过上下文学习影响模型的响应-大模型应用实践教程
AI应用

Cofounder:人工智能生成的应用程序,全栈+生成用户界面-AI应用

2024-11-06
Docling:快速地解析pdf/word/ppt导出为md/json格式-AI应用
AI应用

Docling:快速地解析pdf/word/ppt导出为md/json格式-AI应用

2024-11-05
Load More
Next Post
MiniMind 3小时完全从0训练26M的小参数GPT,个人显卡即可推理训练!-AI应用

MiniMind 3小时完全从0训练26M的小参数GPT,个人显卡即可推理训练!-AI应用

Please login to join discussion
Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs[不要过度思考2+3等于几 在类LLM的过度思考上]-AI论文
claude

Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs[不要过度思考2+3等于几 在类LLM的过度思考上]-AI论文

by 小远
2025-01-12
0

图1:在图(a)中过度思考问题的示意图:...

Read more
Slow Perception: Let’s Perceive Geometric Figures Step-by-step[缓慢感知:让我们逐步感知几何图形]-AI论文
AI论文

Slow Perception: Let’s Perceive Geometric Figures Step-by-step[缓慢感知:让我们逐步感知几何图形]-AI论文

by 小远
2025-01-12
0

摘要 近期,“视觉感知”开始进入人们的视...

Read more
Ensembling Large Language Models with Process Reward-Guided Tree Search for Better Complex Reasoning[结合大型语言模型与过程奖励引导的树搜索以提升复杂推理能力]-AI论文
claude

Ensembling Large Language Models with Process Reward-Guided Tree Search for Better Complex Reasoning[结合大型语言模型与过程奖励引导的树搜索以提升复杂推理能力]-AI论文

by 小远
2025-01-12
0

摘要 尽管大型语言模型近期取得了显著进展...

Read more
Large Concept Models:Language Modeling in a Sentence Representation Space[大型概念模型:在句子表示空间中的语言建模]-AI论文
AI论文

Large Concept Models:Language Modeling in a Sentence Representation Space[大型概念模型:在句子表示空间中的语言建模]-AI论文

by 小远
2025-01-06
0

大型语言模型(LLMs)已经彻底改变了人...

Read more

Claude大模型学习社区

希望成为中国第一个大模型教程和AI论文的分享乐园!帮助每一位同学快速上入门大模型!

分类

  • AIRAG
  • AI应用
  • AI提示库
  • AI论文
  • artifacts
  • chatgpt
  • claude
  • claude教程
  • Cursor
  • gemini
  • llama
  • ollama
  • openAIo1
  • prompt工程
  • 文心一言

标签

Agent Agents AI工具 AI应用 AI提示库 AI论文 API chatgpt claude Claude3.5 Sonnet COT css Cursor CursorAI ernie html IDE Llama 3 llama3.1 llama3.2 LLM meta o1 o1-preview ollama OpenAI openAIo1 OpenAI o1 openAIo1原理 prompt rag Reasoning Swarm web 函数构建 原理解读 合成数据 多智能体 大模型 强化学习 思维链 接码平台 提示词 智能体 检索增强
  • Home
  • AI教程
  • AI大模型
  • AI论文
  • AI应用
  • 加入会员社区
  • About Us

© 2024 ClaudeAI大模型学习社区 所有属于ICP备案:豫ICP备2024068873号-1号.

No Result
View All Result
  • Home
  • AI教程
    • 大模型应用实践课程
      • 大型语言模型课程介绍
      • 第1-1章:使用 OpenAI 创建您的第一个聊天机器人-大模型应用实践教程
      • 第1-2章:使用 OpenAI 创建简单的自然语言到 SQL-大模型应用实践教程
    • Claude应用开发教程
      • 第1章:基本提示结构-Claude应用开发教程
      • 第 2 章:基本函数构建-Claude开发应用教程
      • 第3章:角色扮演提示-Claude应用开发教程
      • 第4章 分离数据和指令-Claude开发应用教程
      • 第 5 章:格式化输出-Claude应用开发教程
      • 第6章:预知(Thinking Step by Step)-Claude应用开发教程
    • Claude提示词教程
      • 第 1 课:基本提​​示词技术-Claude提示词工程课程
      • 第 2 课:医疗病例摘要助手[XML-JSON格式化输出]-Claude提示词工程教程
      • 第 3 课:提示工程迭代流程-Claude提示词工程课程
      • 第 4 课:客服聊天记录总结生成器-Claude提示词课程
    • Claude函数/工具调用教程
      • 第3章:使用工具调用强制 JSON结构输出[以提取维基百科页面文章为例]-Claude工具调用教程
      • 第2章:ClaudeAPI如何构建工具并调用[以计算器工具调用为例]-Claude工具调用教程
      • 第1章:工具使用/函数调用介绍和概述-Claude函数工具调用教程
    • ClaudeAPI基础入门教程
      • 第2章:构建简单的多轮聊天机器人-ClaudeAPI基础入门教程
      • 第1章:Claude SDK安装和使用-CLaudeAPI基础入门教程
      • Claude API基础知识课程简介
  • AI大模型
    • chatgpt
      • OpenAI o1-preview 简介和如何使用
      • 如何设置使用新的 ChatGPT o1 模型
      • OpenAI o1 性能评估和学习推理思维链介绍
      • OpenAI o1-mini和gpt4o性能对比介绍
      • OpenAI o1 模型与GPT-4o模型使用区别和场景
    • Claude
      • Claude的project介绍和创建
      • Claude Sonnet 3.5 API 教程
      • Claude 3 最新注册使用教程!(国内版)-性能完爆GPT4o!
      • Claude3.5 vs GPT4 谁才是最强大模型?
      • Claude国内无法登录的解决办法
      • Claude3.5 Sonnet的详细介绍
      • Claude如何写好提示词
      • Claude快速入门指南
    • Llama3
      • Llama3.2最新90b 11b 3b 1b模型介绍-AI大模型
      •  Llama Stack入门安装指南[结合Ollama]-AI大模型
      • Llama 3.2介绍最全技术报告-AI大模型
      • Llama 3.1技术报告:Meta推出最强开源大模型
      • Meta 的 Llama 3.1 405B工作原理、用例等
      • 如何在本地安装和运行 Meta Llama 3.1
      • 使用 Ollama和租用GPU 运行 Llama 3.1 405B:分步指南
      • Llama3.1 Colab 微调指南
  • AI论文
    • OpenAIo1原理解读:重复采样扩展推理计算[Large Language Monkeys: Scaling Inference Compute with Repeated Sampling]-AI论文
    • OpenIAo1原理解读:Q*强化学习与启发式搜索推理框架[Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning]-AI论文
    • OpenAIo1原理解读:基于蒙特卡罗树搜索的自我博弈互相推理[Self-play Mutual Reasoning]-AI论文
    • openAIo1原理解读:推理增加计算量提高大模型效果[Scaling LLM Test-Time Compute Optimally can be More Effective]-AI论文
    • OpenAI o1大模型原理解读:自博弈Self-play强化学习方法[A Survey on Self-play Methods in Reinforcement Learning]-AI论文
    • OpenAI o1大模型原理解读:Quiet-STaR 推理思维链[Language Models Can Teach Themselves to Think Before Speaking]-AI论文
    • OpenAI o1大模型原理论文汇总[Awesome LLM Strawberry]-AI论文
  • AI应用
    •  Crawl4AI:开源 LLM 友好型 Web 爬虫和抓取工具-AI应用
    • AI Scientist:用于全自动科学发现的写论文应用-AI应用
    • ai-data-analysis-MulitAgent:一种用于自动化复杂研究过程的先进多智能体系统-AI应用
    • Aider:最好的免费开源 AI 编码助手,自动git提交代码!-AI应用
    • AIHawk:你的 AI 求职助手,自动化申请、获得个性化推荐,更快找到您梦想的工作-AI应用
  • 加入会员社区
  • About Us

© 2024 ClaudeAI大模型学习社区 所有属于ICP备案:豫ICP备2024068873号-1号.

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In