• Privacy & Policy
  • Contact
2025-05-21 04:09:00
  • Login
  • Register
欢迎来到ClaudeAI博客社区
  • Home
  • AI教程
    • 大模型应用实践课程
      • 大型语言模型课程介绍
      • 第1-1章:使用 OpenAI 创建您的第一个聊天机器人-大模型应用实践教程
      • 第1-2章:使用 OpenAI 创建简单的自然语言到 SQL-大模型应用实践教程
    • Claude应用开发教程
      • 第1章:基本提示结构-Claude应用开发教程
      • 第 2 章:基本函数构建-Claude开发应用教程
      • 第3章:角色扮演提示-Claude应用开发教程
      • 第4章 分离数据和指令-Claude开发应用教程
      • 第 5 章:格式化输出-Claude应用开发教程
      • 第6章:预知(Thinking Step by Step)-Claude应用开发教程
    • Claude提示词教程
      • 第 1 课:基本提​​示词技术-Claude提示词工程课程
      • 第 2 课:医疗病例摘要助手[XML-JSON格式化输出]-Claude提示词工程教程
      • 第 3 课:提示工程迭代流程-Claude提示词工程课程
      • 第 4 课:客服聊天记录总结生成器-Claude提示词课程
    • Claude函数/工具调用教程
      • 第3章:使用工具调用强制 JSON结构输出[以提取维基百科页面文章为例]-Claude工具调用教程
      • 第2章:ClaudeAPI如何构建工具并调用[以计算器工具调用为例]-Claude工具调用教程
      • 第1章:工具使用/函数调用介绍和概述-Claude函数工具调用教程
    • ClaudeAPI基础入门教程
      • 第2章:构建简单的多轮聊天机器人-ClaudeAPI基础入门教程
      • 第1章:Claude SDK安装和使用-CLaudeAPI基础入门教程
      • Claude API基础知识课程简介
  • AI大模型
    • chatgpt
      • OpenAI o1-preview 简介和如何使用
      • 如何设置使用新的 ChatGPT o1 模型
      • OpenAI o1 性能评估和学习推理思维链介绍
      • OpenAI o1-mini和gpt4o性能对比介绍
      • OpenAI o1 模型与GPT-4o模型使用区别和场景
    • Claude
      • Claude的project介绍和创建
      • Claude Sonnet 3.5 API 教程
      • Claude 3 最新注册使用教程!(国内版)-性能完爆GPT4o!
      • Claude3.5 vs GPT4 谁才是最强大模型?
      • Claude国内无法登录的解决办法
      • Claude3.5 Sonnet的详细介绍
      • Claude如何写好提示词
      • Claude快速入门指南
    • Llama3
      • Llama3.2最新90b 11b 3b 1b模型介绍-AI大模型
      •  Llama Stack入门安装指南[结合Ollama]-AI大模型
      • Llama 3.2介绍最全技术报告-AI大模型
      • Llama 3.1技术报告:Meta推出最强开源大模型
      • Meta 的 Llama 3.1 405B工作原理、用例等
      • 如何在本地安装和运行 Meta Llama 3.1
      • 使用 Ollama和租用GPU 运行 Llama 3.1 405B:分步指南
      • Llama3.1 Colab 微调指南
  • AI论文
    • OpenAIo1原理解读:重复采样扩展推理计算[Large Language Monkeys: Scaling Inference Compute with Repeated Sampling]-AI论文
    • OpenIAo1原理解读:Q*强化学习与启发式搜索推理框架[Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning]-AI论文
    • OpenAIo1原理解读:基于蒙特卡罗树搜索的自我博弈互相推理[Self-play Mutual Reasoning]-AI论文
    • openAIo1原理解读:推理增加计算量提高大模型效果[Scaling LLM Test-Time Compute Optimally can be More Effective]-AI论文
    • OpenAI o1大模型原理解读:自博弈Self-play强化学习方法[A Survey on Self-play Methods in Reinforcement Learning]-AI论文
    • OpenAI o1大模型原理解读:Quiet-STaR 推理思维链[Language Models Can Teach Themselves to Think Before Speaking]-AI论文
    • OpenAI o1大模型原理论文汇总[Awesome LLM Strawberry]-AI论文
  • AI应用
    •  Crawl4AI:开源 LLM 友好型 Web 爬虫和抓取工具-AI应用
    • AI Scientist:用于全自动科学发现的写论文应用-AI应用
    • ai-data-analysis-MulitAgent:一种用于自动化复杂研究过程的先进多智能体系统-AI应用
    • Aider:最好的免费开源 AI 编码助手,自动git提交代码!-AI应用
    • AIHawk:你的 AI 求职助手,自动化申请、获得个性化推荐,更快找到您梦想的工作-AI应用
  • 加入会员社区
  • About Us
No Result
View All Result
  • Home
  • AI教程
    • 大模型应用实践课程
      • 大型语言模型课程介绍
      • 第1-1章:使用 OpenAI 创建您的第一个聊天机器人-大模型应用实践教程
      • 第1-2章:使用 OpenAI 创建简单的自然语言到 SQL-大模型应用实践教程
    • Claude应用开发教程
      • 第1章:基本提示结构-Claude应用开发教程
      • 第 2 章:基本函数构建-Claude开发应用教程
      • 第3章:角色扮演提示-Claude应用开发教程
      • 第4章 分离数据和指令-Claude开发应用教程
      • 第 5 章:格式化输出-Claude应用开发教程
      • 第6章:预知(Thinking Step by Step)-Claude应用开发教程
    • Claude提示词教程
      • 第 1 课:基本提​​示词技术-Claude提示词工程课程
      • 第 2 课:医疗病例摘要助手[XML-JSON格式化输出]-Claude提示词工程教程
      • 第 3 课:提示工程迭代流程-Claude提示词工程课程
      • 第 4 课:客服聊天记录总结生成器-Claude提示词课程
    • Claude函数/工具调用教程
      • 第3章:使用工具调用强制 JSON结构输出[以提取维基百科页面文章为例]-Claude工具调用教程
      • 第2章:ClaudeAPI如何构建工具并调用[以计算器工具调用为例]-Claude工具调用教程
      • 第1章:工具使用/函数调用介绍和概述-Claude函数工具调用教程
    • ClaudeAPI基础入门教程
      • 第2章:构建简单的多轮聊天机器人-ClaudeAPI基础入门教程
      • 第1章:Claude SDK安装和使用-CLaudeAPI基础入门教程
      • Claude API基础知识课程简介
  • AI大模型
    • chatgpt
      • OpenAI o1-preview 简介和如何使用
      • 如何设置使用新的 ChatGPT o1 模型
      • OpenAI o1 性能评估和学习推理思维链介绍
      • OpenAI o1-mini和gpt4o性能对比介绍
      • OpenAI o1 模型与GPT-4o模型使用区别和场景
    • Claude
      • Claude的project介绍和创建
      • Claude Sonnet 3.5 API 教程
      • Claude 3 最新注册使用教程!(国内版)-性能完爆GPT4o!
      • Claude3.5 vs GPT4 谁才是最强大模型?
      • Claude国内无法登录的解决办法
      • Claude3.5 Sonnet的详细介绍
      • Claude如何写好提示词
      • Claude快速入门指南
    • Llama3
      • Llama3.2最新90b 11b 3b 1b模型介绍-AI大模型
      •  Llama Stack入门安装指南[结合Ollama]-AI大模型
      • Llama 3.2介绍最全技术报告-AI大模型
      • Llama 3.1技术报告:Meta推出最强开源大模型
      • Meta 的 Llama 3.1 405B工作原理、用例等
      • 如何在本地安装和运行 Meta Llama 3.1
      • 使用 Ollama和租用GPU 运行 Llama 3.1 405B:分步指南
      • Llama3.1 Colab 微调指南
  • AI论文
    • OpenAIo1原理解读:重复采样扩展推理计算[Large Language Monkeys: Scaling Inference Compute with Repeated Sampling]-AI论文
    • OpenIAo1原理解读:Q*强化学习与启发式搜索推理框架[Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning]-AI论文
    • OpenAIo1原理解读:基于蒙特卡罗树搜索的自我博弈互相推理[Self-play Mutual Reasoning]-AI论文
    • openAIo1原理解读:推理增加计算量提高大模型效果[Scaling LLM Test-Time Compute Optimally can be More Effective]-AI论文
    • OpenAI o1大模型原理解读:自博弈Self-play强化学习方法[A Survey on Self-play Methods in Reinforcement Learning]-AI论文
    • OpenAI o1大模型原理解读:Quiet-STaR 推理思维链[Language Models Can Teach Themselves to Think Before Speaking]-AI论文
    • OpenAI o1大模型原理论文汇总[Awesome LLM Strawberry]-AI论文
  • AI应用
    •  Crawl4AI:开源 LLM 友好型 Web 爬虫和抓取工具-AI应用
    • AI Scientist:用于全自动科学发现的写论文应用-AI应用
    • ai-data-analysis-MulitAgent:一种用于自动化复杂研究过程的先进多智能体系统-AI应用
    • Aider:最好的免费开源 AI 编码助手,自动git提交代码!-AI应用
    • AIHawk:你的 AI 求职助手,自动化申请、获得个性化推荐,更快找到您梦想的工作-AI应用
  • 加入会员社区
  • About Us
No Result
View All Result
欢迎来到ClaudeAI博客社区
No Result
View All Result
Home prompt工程

《面向初学者的prompt工程保姆教程》-总结篇

小远 by 小远
2024-09-09
in prompt工程
0

目录

Toggle
  • 1.1 基础prompt框架
  • 1.2 promtp技巧
    • 指定角色
    • 给出示例
    • 链式思考提示
    • 自洽性
    • LtM (由易至难提示 )
    • 格式化提示语
  • 1.3 prompt安全

1.1 基础prompt框架

指令:想要模型执行的特定任务或指令。

上下文:包含外部信息或额外的上下文信息,引导语言模型更好地响应。

输入数据:用户输入的内容或问题。

输出指示:指定输出的类型或格式要求等

角色指令/任务问题上下文示例(few shot)

好的提示语应该是一个完整的段落,在这个段落里提供尽可能多的细节,告诉模型他应该从什么角度去思考问题。

我希望你能充当我的英语口语老师,我将用英语与你交谈,而你将用英语回答我,以练习我的英语口语。我希望你能保持回复的整洁,将回复限制在100字以内。我希望你能严格纠正我的语法错误,错别字和事实性错误。现在我们开始练习,你可以先问我一个问题。记住,我要你严格纠正我的语法错误,错别字和事实性错误。

我希望你能充当我的英语口语老师 — 指定角色

我将用英语与你交谈,而你将用英语回答我,以练习我的英语口语 — 描述背景和指令

我希望你能保持回复的整洁,将回复限制在100字以内 –提出限制

我希望你能严格纠正我的语法错误,错别字和事实性错误 — 输出指示

记住,我要你严格纠正我的语法错误,错别字和事实性错误。– 再次强调

1.2 promtp技巧

指定角色

角色提示是一种强大的策略,可以塑造生成式人工智能模型的输出。它使我们能够控制生成文本的风格、语气和深度,使其更适合特定的上下文或受众。无论您是在草拟电子邮件、撰写评论还是在解决数学问题,角色提示都可以显著提高结果的质量和准确性。随着我们不断探索人工智能的能力,角色提示将继续成为提示工程的关键策略。

为什么指定角色可以提升大模型的输出质量甚至是准确度?

推论【引文】:对于在LLM中通过角色扮演观察到的现象,一个可信的理论根植于这些模型的训练方式。通过从不同领域的大量文本数据中训练,模型形成了对各种角色以及与角色相关的语言的复杂理解。当被要求采用特定角色时,模型可以利用这种理解来产生准确的、特定角色的响应。

发散思考:指定角色之所以有非常好的效果,是因为这个角色本身的含义已经包含了非常多的“隐藏信息”,可能包含限制信息、cot信息等。这些信息是对大量数据的准确抽象。相比其他提示词技巧他更简短、更准确、更丰富。一个猜想是给出越精确的角色指定,提示的效果可能越好,但是受限于个人认知,可能很多的角色我们都不知道,更无从指定。

给出示例

另一个提示策略是少样本提示(few shot prompting), 这种策略将为模型展示一些例子(shots),从而更形象地描述你的需求。

在某些情境下,我们能够相对简单地向AI描述可以或不可以做的事情。但在其他情境下,有些要求很难通过文字指令清晰传达给AI。即便能够描述,AI也可能难以充分理解。举例来说,给宠物取英文名通常融合了多种特定的命名风格。在这种情况下,我们可以通过在提示中加入一些例子来看。

总的来说,提供示例对解决某些任务很有用。当零样本提示和少样本提示不足时,这可能意味着模型学到的东西不足以在任务上表现良好。

链式思考提示

COT (chain-of-thought prompting)

思维链(CoT)提示过程1是一种最近开发的提示方法,它鼓励大语言模型解释其推理过程。下图显示了 few shot standard prompt(左)与链式思维提示过程(右)的比较。

COT同样给出一些样本,但是这些样本包含了完成任务的推理过程。这样大语言模型在回答提示时也会显示推理过程。这种推理的解释往往会引导出更准确的结果。

重要的是,根据Wei等人的说法,“思维链仅在使用∼100B参数的模型时才会产生性能提升”。较小的模型编写了不合逻辑的思维链会导致精度比标准提示更差。通常,模型从思维链提示过程中获得性能提升的方式与模型的大小成比例。

自洽性

其想法是通过少样本CoT采样多个不同的推理路径,并使用生成结果选择最一致的答案。这有助于提高CoT提示在涉及算术和常识推理的任务中的性能。

这个策略假设复杂推理任务一般可以通过多个推理路径获得正确答案,从解码器中抽样生成多样化的推理路径集合,选择一致性最高的输出结果作为最终答案。这个策略在工程上是常见的方案。

其具体过程 引文

Procedure 1. Add “think step-by-step“ to your original question (we’ll call this augmented question the question in the following).2. Ask the question repeatedly (n times) and collect the answers.3. Decide for a voting technique and decide which of the collected answers is picked as the final answer.

实践小问题对于多次调用给出答案,我们如何进行投票,得到最终答案呢?

直接将多次返回的结果,投喂给大模型问题,可以用以下prompt

What is the most common theme among these statements? {list of the collected answers}*

其他人的思考:

Self-consistency 可以用来解决LLM输出的不稳定性,一般我们在测试case时候也会习惯性跑测多次来确认效果,取平均结果作为测试结论,这种评测方式就是类似Self-consistencySC策略符合人类解决问题的直觉,做一道数学题,难免会存在多种不同的解决方案,然后基于投票策略选择最终结果输出,但是SC只关注了推理后最终的答案,没有关注推理路径本身,之前有研究表明过,LLM有时会给出正确的答案,看似合理实则错误的推理过程,这个论文没有讨论,应该看看推理链正确 + 答案正确的准确率,答案可能很容易评判,推理过程有没有可以衡量的方法呢

LtM (由易至难提示 )

最少到最多提示过程 (Least to Most prompting, LtM)1 将 思维链提示过程 (CoT prompting) 进一步发展,首先将问题分解为子问题,然后逐个解决。

这个方法依然容易在现实中找到线索,我们在处理日常复杂事情时,也是经常讲复杂问题分解成简单问题,然后一步一步解决。

这个方法核心有两个阶段:

第一阶段(Decomposition):向语言模型提出查询,将问题分解成子问题。也就是说,首先将复杂的问题分解成一系列更简单的子问题。第二阶段(Subproblem solving):再次向语言模型提出查询,逐个解决这些子问题。值得注意的是,解决第二个子问题的答案建立在第一个子问题的答案之上。原始问题被附加在最后作为最终的子问题。

格式化提示语

使用分隔符

可以使用任何明显的标点符号将特定的文本部分与提示的其余部分分开,这可以是任何可以使模型明确知道这是一个单独部分的标记。使用分隔符是一种可以避免提示注入的有用技术,提示注入是指如果用户将某些输入添加到提示中,则可能会向模型提供与您想要执行的操作相冲突的指令,从而使其遵循冲突的指令而不是执行您想要的操作。即,输入里面可能包含其他指令,会覆盖掉你的指令。对此,使用分隔符是一个不错的策略。分隔符可以是:

“`、

“”、

<>、

\<\tag>、

:等。

指定输出格式

假设你想让 AI 总结一篇非常非常长的文章,并且按照特定格式给你总结,那你可以在文章前面明确输出的格式。

结构化输出可以是 JSON、HTML 等格式。

第二个策略是要求生成一个结构化的输出,这可以使模型的输出更容易被我们解析,例如,你可以在 Python 中将其读入字典或列表中。

1.3 prompt安全

提示注入:类似于sql注入,用户的输入拼接入prompt,可能使得prompt指令失效

提示泄漏:提示注入的一种,这种注入会使得一些系统上下文暴露

破解:通过一些特殊的prompt,可以让模型绕过自身的安全策略,输出一些非法内容。

Tags: prompt思维链
Previous Post

《面向初学者的prompt工程保姆教程》-技巧篇

Next Post

《面向普通人的prompt工程操作手册》-案例篇1

小远

小远

大家好,我是小远,毕业于华南理工大学。作为一名AI算法工程师,我创立了个人博客,旨在成为连接AI技术前沿与广大爱好者的桥梁。宗旨是:记录并分享关于AI大模型的最新知识、研究成果及行业动态,致力于普及AI知识,降低技术门槛,让更多人能够了解并参与到这场科技革命中来。

Related Posts

ChatGPT提示词工程101指南
prompt工程

ChatGPT提示词工程101指南

2024-10-02
OpenAIo1原理解读:重复采样扩展推理计算[Large Language Monkeys: Scaling Inference Compute with Repeated Sampling]-AI论文
prompt工程

使用 OpenAI API 进行快速工程的最佳实践

2024-09-29
OpenAIo1原理解读:重复采样扩展推理计算[Large Language Monkeys: Scaling Inference Compute with Repeated Sampling]-AI论文
prompt工程

利用ChatGPT大模型书写科研基金资助申请书的十条简单规则

2024-09-29
Load More
Next Post
《面向初学者的prompt工程保姆教程》-技巧篇

《面向普通人的prompt工程操作手册》-案例篇1

Please login to join discussion
Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs[不要过度思考2+3等于几 在类LLM的过度思考上]-AI论文
claude

Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs[不要过度思考2+3等于几 在类LLM的过度思考上]-AI论文

by 小远
2025-01-12
0

图1:在图(a)中过度思考问题的示意图:...

Read more
Slow Perception: Let’s Perceive Geometric Figures Step-by-step[缓慢感知:让我们逐步感知几何图形]-AI论文
AI论文

Slow Perception: Let’s Perceive Geometric Figures Step-by-step[缓慢感知:让我们逐步感知几何图形]-AI论文

by 小远
2025-01-12
0

摘要 近期,“视觉感知”开始进入人们的视...

Read more
Ensembling Large Language Models with Process Reward-Guided Tree Search for Better Complex Reasoning[结合大型语言模型与过程奖励引导的树搜索以提升复杂推理能力]-AI论文
claude

Ensembling Large Language Models with Process Reward-Guided Tree Search for Better Complex Reasoning[结合大型语言模型与过程奖励引导的树搜索以提升复杂推理能力]-AI论文

by 小远
2025-01-12
0

摘要 尽管大型语言模型近期取得了显著进展...

Read more
Large Concept Models:Language Modeling in a Sentence Representation Space[大型概念模型:在句子表示空间中的语言建模]-AI论文
AI论文

Large Concept Models:Language Modeling in a Sentence Representation Space[大型概念模型:在句子表示空间中的语言建模]-AI论文

by 小远
2025-01-06
0

大型语言模型(LLMs)已经彻底改变了人...

Read more

Claude大模型学习社区

希望成为中国第一个大模型教程和AI论文的分享乐园!帮助每一位同学快速上入门大模型!

分类

  • AIRAG
  • AI应用
  • AI提示库
  • AI论文
  • artifacts
  • chatgpt
  • claude
  • claude教程
  • Cursor
  • gemini
  • llama
  • ollama
  • openAIo1
  • prompt工程
  • 文心一言

标签

Agent Agents AI工具 AI应用 AI提示库 AI论文 API chatgpt claude Claude3.5 Sonnet COT css Cursor CursorAI ernie html IDE Llama 3 llama3.1 llama3.2 LLM meta o1 o1-preview ollama OpenAI openAIo1 OpenAI o1 openAIo1原理 prompt rag Reasoning Swarm web 函数构建 原理解读 合成数据 多智能体 大模型 强化学习 思维链 接码平台 提示词 智能体 检索增强
  • Home
  • AI教程
  • AI大模型
  • AI论文
  • AI应用
  • 加入会员社区
  • About Us

© 2024 ClaudeAI大模型学习社区 所有属于ICP备案:豫ICP备2024068873号-1号.

No Result
View All Result
  • Home
  • AI教程
    • 大模型应用实践课程
      • 大型语言模型课程介绍
      • 第1-1章:使用 OpenAI 创建您的第一个聊天机器人-大模型应用实践教程
      • 第1-2章:使用 OpenAI 创建简单的自然语言到 SQL-大模型应用实践教程
    • Claude应用开发教程
      • 第1章:基本提示结构-Claude应用开发教程
      • 第 2 章:基本函数构建-Claude开发应用教程
      • 第3章:角色扮演提示-Claude应用开发教程
      • 第4章 分离数据和指令-Claude开发应用教程
      • 第 5 章:格式化输出-Claude应用开发教程
      • 第6章:预知(Thinking Step by Step)-Claude应用开发教程
    • Claude提示词教程
      • 第 1 课:基本提​​示词技术-Claude提示词工程课程
      • 第 2 课:医疗病例摘要助手[XML-JSON格式化输出]-Claude提示词工程教程
      • 第 3 课:提示工程迭代流程-Claude提示词工程课程
      • 第 4 课:客服聊天记录总结生成器-Claude提示词课程
    • Claude函数/工具调用教程
      • 第3章:使用工具调用强制 JSON结构输出[以提取维基百科页面文章为例]-Claude工具调用教程
      • 第2章:ClaudeAPI如何构建工具并调用[以计算器工具调用为例]-Claude工具调用教程
      • 第1章:工具使用/函数调用介绍和概述-Claude函数工具调用教程
    • ClaudeAPI基础入门教程
      • 第2章:构建简单的多轮聊天机器人-ClaudeAPI基础入门教程
      • 第1章:Claude SDK安装和使用-CLaudeAPI基础入门教程
      • Claude API基础知识课程简介
  • AI大模型
    • chatgpt
      • OpenAI o1-preview 简介和如何使用
      • 如何设置使用新的 ChatGPT o1 模型
      • OpenAI o1 性能评估和学习推理思维链介绍
      • OpenAI o1-mini和gpt4o性能对比介绍
      • OpenAI o1 模型与GPT-4o模型使用区别和场景
    • Claude
      • Claude的project介绍和创建
      • Claude Sonnet 3.5 API 教程
      • Claude 3 最新注册使用教程!(国内版)-性能完爆GPT4o!
      • Claude3.5 vs GPT4 谁才是最强大模型?
      • Claude国内无法登录的解决办法
      • Claude3.5 Sonnet的详细介绍
      • Claude如何写好提示词
      • Claude快速入门指南
    • Llama3
      • Llama3.2最新90b 11b 3b 1b模型介绍-AI大模型
      •  Llama Stack入门安装指南[结合Ollama]-AI大模型
      • Llama 3.2介绍最全技术报告-AI大模型
      • Llama 3.1技术报告:Meta推出最强开源大模型
      • Meta 的 Llama 3.1 405B工作原理、用例等
      • 如何在本地安装和运行 Meta Llama 3.1
      • 使用 Ollama和租用GPU 运行 Llama 3.1 405B:分步指南
      • Llama3.1 Colab 微调指南
  • AI论文
    • OpenAIo1原理解读:重复采样扩展推理计算[Large Language Monkeys: Scaling Inference Compute with Repeated Sampling]-AI论文
    • OpenIAo1原理解读:Q*强化学习与启发式搜索推理框架[Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning]-AI论文
    • OpenAIo1原理解读:基于蒙特卡罗树搜索的自我博弈互相推理[Self-play Mutual Reasoning]-AI论文
    • openAIo1原理解读:推理增加计算量提高大模型效果[Scaling LLM Test-Time Compute Optimally can be More Effective]-AI论文
    • OpenAI o1大模型原理解读:自博弈Self-play强化学习方法[A Survey on Self-play Methods in Reinforcement Learning]-AI论文
    • OpenAI o1大模型原理解读:Quiet-STaR 推理思维链[Language Models Can Teach Themselves to Think Before Speaking]-AI论文
    • OpenAI o1大模型原理论文汇总[Awesome LLM Strawberry]-AI论文
  • AI应用
    •  Crawl4AI:开源 LLM 友好型 Web 爬虫和抓取工具-AI应用
    • AI Scientist:用于全自动科学发现的写论文应用-AI应用
    • ai-data-analysis-MulitAgent:一种用于自动化复杂研究过程的先进多智能体系统-AI应用
    • Aider:最好的免费开源 AI 编码助手,自动git提交代码!-AI应用
    • AIHawk:你的 AI 求职助手,自动化申请、获得个性化推荐,更快找到您梦想的工作-AI应用
  • 加入会员社区
  • About Us

© 2024 ClaudeAI大模型学习社区 所有属于ICP备案:豫ICP备2024068873号-1号.

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In